${ }^{125}$ Te and ${ }^{51} \mathrm{~V}$ static NMR study of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys.: Condens. Matter 122579
(http://iopscience.iop.org/0953-8984/12/12/302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.218
The article was downloaded on 15/05/2010 at 20:32

Please note that terms and conditions apply.

${ }^{125} \mathrm{Te}$ and ${ }^{51} \mathrm{~V}$ static NMR study of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses

Shinichi Sakida $\dagger \S$ Satoshi Hayakawa \ddagger and Toshinobu Yoko \dagger
\dagger Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
\ddagger Faculty of Engineering, Okayama University, Okayama, Okayama 700-0927, Japan
E-mail: sakida@kobe-u.ac.jp

Received 14 September 1999, in final form 7 December 1999

Abstract

The structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are investigated by means of ${ }^{125} \mathrm{Te}$ and ${ }^{51} \mathrm{~V}$ static NMR spectroscopies and the local structures around the Te and V atoms are discussed in detail from the respective NMR spectra. The fraction of TeO_{3} trigonal pyramids increases and that of TeO_{4} trigonal bipyramids decreases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are quite different from those of tellurite glasses containing network-modifying oxides. The fraction of VO_{4} tetrahedra increases and that of VO_{5} trigonal bipyramids decreases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. Both chains consisting of tellurite structural units and those consisting of vanadate structural units contribute to the formation of the glass network in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses.

1. Introduction

$\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are known as semiconductors [1]. The glasses are highly conductive compared with $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ glasses and other glasses containing transition-metal oxides with the same amounts of charge carriers [2-4]. In the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses both memory and threshold switching functions have been also reported [5-7].

Although binary tellurite glass systems which can contain less than $50 \mathrm{~mol} \% \mathrm{TeO}_{2}$ are few, the binary $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ system has a very wide glass-forming region. Therefore, the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are of interest from the viewpoint of glass structure. So far, the structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses have been investigated by means of x-ray diffraction [8] and infrared spectroscopy [9]. As a result, it has been reported that the O coordination environments of Te atoms change from the TeO_{4} trigonal bipyramid (tbp) to the TeO_{3} trigonal pyramid (tp) with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. Dimitriev and Dimitrou [8] have concluded that the V atoms are present as VO_{5} groups in the examined composition range. Nevertheless, information obtained so far on the structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses is not sufficient.

NMR spectroscopy is a powerful technique for revealing detailed local structures around nuclei of interest because the direct information about the detailed local structure around the nuclei can be obtained. In previous papers [10-12], the present authors reported that the ${ }^{125} \mathrm{Te}$ static NMR spectra of tellurite glasses can discriminate between TeO_{3} tp and TeO_{4} tbp and, in addition, estimate the TeO_{3} tp and TeO_{4} tbp fractions quantitatively. The structures of various vanadate glasses have been investigated by means of ${ }^{51} \mathrm{~V}$ NMR spectroscopy and discussed in detail, for example, by Hayakawa et al $[13,14]$. Thus, since the O coordination environments of the Te and V atoms can be revealed by means of ${ }^{125} \mathrm{Te}$ and ${ }^{51} \mathrm{~V}$ NMR spectroscopies, it is

[^0] Japan.
expected to obtain more detailed structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses by considering the local structures around both Te and V atoms.

In the present work, ${ }^{125} \mathrm{Te}$ and ${ }^{51} \mathrm{~V}$ static NMR spectra are measured for $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses and the structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are discussed in detail.

2. Experiment

2.1. Sample preparation

TeO_{2} and $x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$ glasses containing no $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $0.3 \mathrm{~mol} \% \mathrm{Fe}_{2} \mathrm{O}_{3}(x=5$, 9.1, 20, 30, 33.3, 40, 50, 60 and 70) were prepared. Crystalline $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ and NaVTeO_{5} were also prepared for the ${ }^{51} \mathrm{~V}$ static NMR measurement. Reagent-grade $\beta-\mathrm{TeO}_{2}$ (Mitsuwa Pure Chemicals), $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (Nacalai Tesque), $\mathrm{V}_{2} \mathrm{O}_{5}$ (Nacalai Tesque) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (Nacalai Tesque) were used as starting materials. A 3 g batch of well mixed reagents was melted in a 95% $\mathrm{Pt}-5 \% \mathrm{Au}$ crucible at $650-800^{\circ} \mathrm{C}$ for 10 min in air. The melt was poured onto a stainless plate and immediately pressed by another stainless plate. The TeO_{2} glass and the $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ and NaVTeO_{5} crystals were prepared according to the procedures described in previous papers $[10,15]$. In most cases, the quenched melts were identified to be glassy by visual inspection. In some cases, x-ray diffraction using a Rigaku Geigerflex RAD-IIA diffractometer was used to confirm visual inspection. The melting conditions for all the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are given in table 1 .

Table 1. Conditions of glass preparation and $\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}$.

Glass composition $(\mathrm{mol} \%)$	Melting temperature $\left({ }^{\circ} \mathrm{C}\right)$	Melting time (min)	$\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}(\%)$
$5 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 95 \mathrm{TeO}_{2}$	800	10	2.7
$9.1 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 90.9 \mathrm{TeO}_{2}$	800	10	3.6
$20 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 80 \mathrm{TeO}_{2}$	750	10	5.4
$30 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 70 \mathrm{TeO}_{2}$	700	10	6.9
$33.3 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 66.7 \mathrm{TeO}_{2}$	650	10	6.6
$40 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 60 \mathrm{TeO}_{2}$	700	10	6.4
$50 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 50 \mathrm{TeO}_{2}$	700	10	6.4
$60 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 40 \mathrm{TeO}_{2}$	750	10	5.1
$70 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 30 \mathrm{TeO}_{2}$	750	10	2.4

The experimental uncertainty in the values of $\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}$ is $\pm 0.2 \%$.

2.2. Chemical analysis

The $\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}$ ratios of glass samples were determined by a redox titrimetry using the KMnO_{4} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$ solutions (JIS G1221).

2.3. NMR measurements

The ${ }^{125} \mathrm{Te}$ static NMR spectra of powdered tellurite glasses and crystals were measured at 126.32 MHz (9.4 T) using a JEOL JNM-GSX 400 MAS FT-NMR spectrometer. A single pulse sequence was used for $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses: a pulse length of $2.5 \mu \mathrm{~s}$, an accumulation of $12000-20000$ scans and a pulse delay of 2.5 s . Telluric acid $\mathrm{Te}(\mathrm{OH})_{6}$ was used as a secondary standard, whose chemical shift is $\delta=692.2 \mathrm{ppm}$ with reference to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Te}$ [16].

The ${ }^{51} \mathrm{~V}$ static NMR spectra were measured at $105 \mathrm{MHz}(9.4 \mathrm{~T})$. A single pulse sequence was used: a pulse length of $1.0 \mu \mathrm{~s}$, an accumulation of $400-800$ scans and a pulse delay of 2.5 s for $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses; a pulse length of $0.5 \mu \mathrm{~s}$, an accumulation of $80-160$ scans and a pulse

Figure 1. ${ }^{125} \mathrm{Te}$ static NMR spectra of $x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-$ $x) \mathrm{TeO}_{2}$ glasses $(x=0,5,9.1,20,30,33.3$ and 40$)$ and $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ crystal.

Figure 2. Simulated and experimental ${ }^{125}$ Te static NMR spectra of $x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$ glasses $(x=0,5,9.1$, $20,30,33.3$ and 40).
delay of 2.5 s for the $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ and $\mathrm{NaVTeO} \mathrm{O}_{5}$ crystals. $\mathrm{Zn}_{3}\left(\mathrm{VO}_{4}\right)_{2}$ was used as a secondary standard, whose chemical shift is $\delta=-522 \mathrm{ppm}$ with reference to a VOCl_{3} neat liquid [17].

2.4. ${ }^{125} \mathrm{Te}$ and ${ }^{51} V$ static NMR spectral analyses

The principal components of the chemical shift tensors δ_{1}, δ_{2} and δ_{3} were estimated by fitting the theoretically calculated NMR spectra to the experimental NMR spectra, as described in the previous paper [15]. The isotropic chemical shift $\delta_{i s o}$, the chemical shift anisotropy $\Delta \delta$ and the asymmetry parameter η were also determined according to the following definitions [18, 19]:

$$
\begin{align*}
& \delta_{i s o}=\frac{\delta_{1}+\delta_{2}+\delta_{3}}{3} \tag{1}\\
& \Delta \delta=\delta_{3}-\frac{\delta_{1}+\delta_{2}}{2} \tag{2}\\
& \eta=\frac{\delta_{2}-\delta_{1}}{\delta_{3}-\delta_{i s o}} . \tag{3}
\end{align*}
$$

The principal components of the chemical shift tensors can be determined based on equation (4):

$$
\begin{equation*}
\left|\delta_{3}-\delta_{i s o}\right| \geqslant\left|\delta_{1}-\delta_{i s o}\right| \geqslant\left|\delta_{2}-\delta_{i s o}\right| . \tag{4}
\end{equation*}
$$

3. Results

The analysed $\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}$ ratios are given in table 1. The experimental uncertainty in the $\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}$ values is $\pm 0.2 \%$. The $\mathrm{V}^{4+} / \mathrm{V}_{\text {total }}$ ratio increased up to $30 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ and then decreased with a further increase of $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The latter tendency was consistent with a tendency already reported [4]. Since the fraction of V^{4+} ions is at most 6.9%, as given in table 1, the coordination state of V^{4+} ions seems negligible in discussion.

Table 2. Chemical shift parameters $\delta_{1}, \delta_{2}, \delta_{3}$ and $\delta_{i s o}$ used in simulation of ${ }^{125} \mathrm{Te}$ static NMR spectra, chemical shift anisotropy $\Delta \delta$ and asymmetry parameter η.

Glass	Profile 1: TeO_{4}						
$(\mathrm{~mol} \%)$	δ_{1}	δ_{2}	δ_{3}	$\delta_{\text {iso }}$	$\Delta \delta$	η	Area (\%)
TeO_{2}	2220	1590	620	1477	-1285	0.74	100
$x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$							
$x=5$	2290	1660	690	1547	-1285	0.74	89
$x=9.1$	2420	1790	820	1677	-1285	0.74	81
$x=20$	2360	1730	760	1617	-1285	0.74	64
$x=30$	2370	1740	770	1627	-1285	0.74	57
$x=33.3$	2370	1740	770	1627	-1285	0.74	55
$x=40$	2310	1680	710	1567	-1285	0.74	53
				Profile $2: \mathrm{TeO}_{3}$			
TeO_{2}	-	-	-	-	-	-	0
$x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$							
$x=5$	2170	1980	1290	1813	-835	0.38	11
$x=9.1$	2290	2100	1410	1933	-835	0.38	19
$x=20$	2220	2030	1340	1863	-835	0.38	36
$x=30$	2250	2060	1370	1893	-835	0.38	43
$x=33.3$	2210	2020	1330	1853	-835	0.38	45
$x=40$	2240	2050	1360	1883	-835	0.38	47

The $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{\text {iso }}$ and $\Delta \delta$ values have a unit of ppm. The errors in δ_{1}, δ_{2} and δ_{3} are $\pm 10 \mathrm{ppm}$. The errors in area are $\pm 2 \%$.

Figure 1 shows the ${ }^{125} \mathrm{Te}$ static NMR spectra of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses and a $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ crystal. All spectra of glasses consisted of one broad peak without splitting in the range of 500 to 2800 ppm . The peak intensities in the range of $500-1800 \mathrm{ppm}$ decreased with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content, suggesting that the local structures around Te atoms change with the $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The line profiles of a glass and a crystal with the $33.3 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 66.7 \mathrm{TeO}_{2}$ composition were quite different, indicating that the local structures around Te atoms are largely different between the two. In a similar manner as that in alkali tellurite glasses [10], the ${ }^{125} \mathrm{Te}$ static NMR spectra of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses were deconvoluted by using two spectral components: profile 1 due to TeO_{4} tbp and profile 2 due to TeO_{3} tp. Line profile deconvolutions are shown in figure 2. The values obtained by the spectral deconvolution are summarized in table 2. As for glasses containing more than $50 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$, static spectra with S / N ratios adequate to perform the line profile deconvolution could not be obtained.

Figure 3 plots the TeO_{4} tbp and TeO_{3} tp fractions N_{4} and N_{3} against the $\mathrm{M}_{y} \mathrm{O}$ content in $\mathrm{M}_{y} \mathrm{O}-\mathrm{TeO}_{2}$ glasses $(\mathrm{M}=\mathrm{V}, \mathrm{Li}, \mathrm{Pb}$ and Ga$)$, where $x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}(x=5,9.1,20$, $30,33.3$ and 40) is converted into $x^{\prime} \mathrm{V}_{2 / 5} \mathrm{O} \cdot\left(100-x^{\prime}\right) \mathrm{TeO}_{2}\left(x^{\prime}=20.8,33.3,55.6,68.2,71.4\right.$ and 76.9), respectively. The experimental uncertainties in the N_{3} and N_{4} values are $\pm 2 \%$. The N_{3} value increases and the N_{4} value decreases monotonically with increasing $\mathrm{M}_{y} \mathrm{O}$ content.

Figure 3. Plots of fractions of N_{4} and N_{3} against $\mathrm{M}_{y} \mathrm{O}$ content in $\mathrm{M}_{y} \mathrm{O}-\mathrm{TeO}_{2}$ glasses $(\mathrm{M}=\mathrm{V}$, Li, Pb and Ga).

The degree of increase of N_{3} in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glass system is much smaller than that in other tellurite glasses referred to in figure 3 , indicating that the structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses are quite different from those of other tellurite glasses [10-12].

Figure 4 shows the ${ }^{51} \mathrm{~V}$ static NMR spectra of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses together with those of the $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ and NaVTeO_{5} crystals. The NaVTeO_{5} [20] and $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ [21] crystals contain only a VO_{4} tetrahedron and only a VO_{5} tbp, respectively, as the structural unit. The static spectrum of NaVTeO_{5} consists of one broad peak without splitting in the range of -350 to -800 ppm and has the strongest intensity at -520 ppm , while that of $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ is in the range of -200 to -1000 ppm and has the strongest intensity at -350 ppm (see table 3). Since the line profiles of the static spectra of these crystals gave typical powder patterns determined by the principal components of the chemical shift tensors $\delta_{1}^{\prime}, \delta_{2}^{\prime}$ and δ_{3}^{\prime}, the $\delta_{1}^{\prime}, \delta_{2}^{\prime}$ and δ_{3}^{\prime} values can be estimated from the spectra. The isotropic chemical shift $\delta_{i s o}^{\prime}$, the chemical shift anisotropy $\Delta \delta^{\prime}$ and the asymmetry parameter η^{\prime} were calculated using equations (1)-(3). The results are listed in table 3 . Figure 5 shows the relationship between the asymmetry parameter η^{\prime} and the absolute value of the chemical shift anisotropy $\left|\Delta \delta^{\prime}\right|$ for various structural units found in various vanadate glasses and crystals [13, 14, 22].

On the other hand, all the static spectra of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses consist of two broad peaks in the range of -1400 to 300 ppm and have long tails extending to low frequencies, indicating that the glasses consist of both VO_{4} tetrahedra and VO_{5} tbp in the whole composition range. On the basis of the line profiles of NaVTeO_{5} and $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ crystals, peaks around -500 and -280 ppm in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses can be assigned to VO_{4} tetrahedra and VO_{5} tbp, respectively, and long tails extending to low frequencies are due to VO_{5} tbp. The experimental ${ }^{51} \mathrm{~V}$ static NMR

Figure 4. ${ }^{51} \mathrm{~V}$ static NMR spectra of $x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$ glasses ($x=5,9.1,20,30,33.3,40,50,60$ and 70) and $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ and NaVTeO_{5} crystals.
spectra were deconvoluted by using two spectral components: peak 1 due to VO_{4} tetrahedra and peak 2 due to VO_{5} tbp. Line profile deconvolutions performed are shown in figure 6. The $\delta_{1}^{\prime}, \delta_{2}^{\prime}, \delta_{3}^{\prime}, \delta_{i s o}^{\prime}, \Delta \delta^{\prime}$ and η^{\prime} values obtained are summarized in table 3 . The NMR parameters η^{\prime} and $\left|\Delta \delta^{\prime}\right|$ of peaks 1 and 2 are shown in figure 5.

The $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain in figure 5 consists of VO_{5} tbp, and the $\mathrm{VO}_{4}^{3-}, \mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ and $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain consist only of VO_{4} tetrahedra. If the $\left|\Delta \delta^{\prime}\right|$ values of vanadate glasses and crystals are less than 450 ppm or more than 550 ppm , then the constituting structural units can be undoubtedly regarded as VO_{4} tetrahedra and VO_{5} tbp, respectively. The $\left|\Delta \delta^{\prime}\right|$ values of NaVTeO_{5} and $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ are 289 and 609 ppm , respectively, indicating that the classification described above is reasonable. All the values of peak 1 are less than 450 ppm in $\left|\Delta \delta^{\prime}\right|$, while those of peak 2 are more than 800 ppm . This result verifies that peaks 1 and 2 correspond to VO_{4} tetrahedron and VO_{5} tbp, respectively.

Figure 7 plots the VO_{4} tetrahedron and VO_{5} tbp fractions N_{4}^{\prime} and N_{5}^{\prime} against the $\mathrm{V}_{2} \mathrm{O}_{5}$ content in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses. The experimental uncertainties in the N_{4}^{\prime} and N_{5}^{\prime} values are $\pm 1 \%$. The N_{4}^{\prime} value increases and the N_{5}^{\prime} value decreases up to $\sim 40 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ and then the degree of changes in N_{4}^{\prime} and N_{5}^{\prime} becomes small with a further increase in $\mathrm{V}_{2} \mathrm{O}_{5}$ content.

4. Discussion

4.1. Local structure of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses

The highest absorption bands at $940-1000 \mathrm{~cm}^{-1}$ in the infrared spectra of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses [9] are assigned to $\mathrm{V}=\mathrm{O}$ double bonds. Therefore, the $\mathrm{V}=\mathrm{O}$ double bonds are considered to be contained as the structural units of vanadate groups in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses. Figure 8

Figure 5. Plots of η^{\prime} against $\left|\Delta \delta^{\prime}\right|$ for $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses and NaVTeO_{5} and $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ crystals.
shows the structural units of VO_{4} tetrahedra and VO_{5} tbps which are probably contained in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses in a manner similar to several vanadate crystals [20, 21, 23, 24, 26].

The VO_{4} tetrahedra are classified into three groups: (i) VO_{4}^{3-}, (ii) $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ and (iii) $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains. The VO_{4}^{3-} has two $\mathrm{V}=\mathrm{O}$ double bonds and the $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ and $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain have one $\mathrm{V}=\mathrm{O}$ double bond per V atom. The $\mathrm{VO}_{4}^{3-}, \mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ and $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain are found in the NaVTeO 5 [20], $\mathrm{Mg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ [23] and LiVO_{3} crystals [24], respectively. The structure of VO_{4}^{3-} in NaVTeO_{5} is quite different from that in divalent-metal orthovanadate crystals such as $\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}$ [25]. Four regions determined by both η^{\prime} and $\left|\Delta \delta^{\prime}\right|$ of $\mathrm{VO}_{4}^{3-}, \mathrm{V}_{2} \mathrm{O}_{7}^{4-},\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain in monovalent-metal and divalent-metal vanadate crystals and glasses are depicted in figure 5. Therefore, the point determined by both $\left|\Delta \delta^{\prime}\right|$ and η^{\prime} of NaVTeO_{5} is not located in the region of VO_{4}^{3-} as illustrated in figure 5 .

The VO_{5} tbps are classified into two groups: (i) $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains and (ii) $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains. The former is found in a $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ crystal [21], while the latter in a $\beta-\mathrm{NaVO}_{3}$ crystal [26]. Both groups have one $\mathrm{V}=\mathrm{O}$ double bond per V atom.

The composition dependence of $\left|\Delta \delta^{\prime}\right|$ of VO_{4} tetrahedra in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses is shown in figure 9. The broken line in this figure denotes the $\left|\Delta \delta^{\prime}\right|$ value (289 ppm) of VO_{4} tetrahedra in an NaVTeO_{5} crystal containing only VO_{4}^{3-}. The $\left|\Delta \delta^{\prime}\right|$ of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses increase with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. Since the $\left|\Delta \delta^{\prime}\right|$ values of glasses containing 5 and $9.1 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ are smaller than that of an NaVTeO_{5} crystal, it can be deduced that VO_{4}^{3-} is mainly formed in these glasses. From the four regions determined by both η^{\prime} and $\left|\Delta \delta^{\prime}\right|$ of $\mathrm{VO}_{4}^{3-}, \mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ and $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain (figure 5), the following order in $\left|\Delta \delta^{\prime}\right|$ is found: $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain $>\mathrm{V}_{2} \mathrm{O}_{7}^{4-}>\mathrm{VO}_{4}^{3-}$. The $\left|\Delta \delta^{\prime}\right|$ values of glasses with more than $20 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ are much

Table 3. Chemical shift parameters $\delta_{1}^{\prime}, \delta_{2}^{\prime}, \delta_{3}^{\prime}$ and $\delta_{i s o}^{\prime}$ used in simulation of ${ }^{51} \mathrm{~V}$ static NMR spectra, chemical shift anisotropy $\Delta \delta^{\prime}$ and asymmetry parameter η^{\prime}.

Glass$x(\mathrm{~mol} \%)$	Peak 1: VO_{4}						
	δ_{1}^{\prime}	δ_{2}^{\prime}	δ_{3}^{\prime}	$\delta_{\text {iso }}^{\prime}$	$\Delta \delta^{\prime}$	η^{\prime}	Area (\%)
$x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$							
$x=5$	-430	-500	-720	-550	-255	0.41	25
$x=9.1$	-440	-500	-750	-563	-280	0.32	28
$x=20$	-410	-500	-800	-570	-345	0.39	34
$x=30$	-420	-510	-840	-590	-375	0.36	38
$x=33.3$	-420	-510	-840	-590	-375	0.36	39
$x=40$	-420	-510	-850	-593	-385	0.35	42
$x=50$	-440	-490	-900	-610	-435	0.17	45
$x=60$	-440	-490	-890	-607	-425	0.18	46
$x=70$	-450	-500	-900	-617	-425	0.18	48
$\mathrm{NaVTeO}{ }_{5}{ }^{*}$	-389	-520	-743	-551	-289	0.68	-
$\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}{ }^{*}$	-	-	-	-	-	-	-
	Peak 2: VO_{5}						
	δ_{1}^{\prime}	δ_{2}^{\prime}	δ_{3}^{\prime}	$\delta_{\text {iso }}^{\prime}$	$\Delta \delta^{\prime}$	η^{\prime}	Area (\%)
$x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$							
$x=5$	-170	-280	-1040	-497	-815	0.20	75
$x=9.1$	-170	-280	-1140	-530	-915	0.18	72
$x=20$	-170	-280	-1180	-543	-955	0.17	66
$x=30$	-170	-280	-1170	-540	-945	0.17	62
$x=33.3$	-180	-290	-1230	-567	-995	0.17	61
$x=40$	-170	-280	-1220	-557	-995	0.17	58
$x=50$	-160	-280	-1280	-573	-1060	0.17	55
$x=60$	-160	-270	-1220	-550	-1005	0.16	54
$x=70$	-160	-270	-1240	-557	-1025	0.16	52
$\mathrm{NaVTeO}_{5}{ }^{*}$	-	-	-	-	-	-	-
$\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}{ }^{*}$	-316	-350	-942	-536	-609	0.08	-

The $\delta_{1}^{\prime}, \delta_{2}^{\prime}, \delta_{3}^{\prime}, \delta_{\text {iso }}^{\prime}$ and $\Delta \delta^{\prime}$ values have a unit of ppm. Asterisks denote vanadate crystals. The errors in $\delta_{1}^{\prime}, \delta_{2}^{\prime}$ and δ_{3}^{\prime} in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses and vanadate crystals are $\pm 10 \mathrm{ppm}$ and $\pm 1 \mathrm{ppm}$ respectively. The errors in area are $\pm 1 \%$.
larger than that of an NaVTeO_{5} crystal, suggesting that the size of $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains increases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content.

4.2. Possible linkage modes between tellurite structural units and vanadate structural units

According to the structural model previously proposed [10-12], three tellurite structural units, $\mathrm{TeO}_{4 / 2}\left(\mathrm{TeO}_{4}\right.$ tbp without a non-bridging oxygen (NBO)), $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(\mathrm{TeO}_{4}\right.$ tbp with an NBO) and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(\mathrm{TeO}_{3}\right.$ tp with two NBOs), are considered to be formed in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses when the $\mathrm{V}_{2} \mathrm{O}_{5}$ contents are small. As is well known, TeO_{4} tbp contains two kinds of bonds: two $\mathrm{Te}-\mathrm{O}_{a x}$ bonds and two $\mathrm{Te}-\mathrm{O}_{e q}$ bonds. The $\mathrm{Te}-\mathrm{O}_{a x}$ bonds are longer than $\mathrm{Te}-\mathrm{O}_{e q}$ bonds. The difference in bond distance is considered to correspond to that in bond valence (BV). For example, the BV of $\mathrm{Te}-\mathrm{O}$ bonds can be estimated using the following equation given by Philippot [27]:

$$
\begin{equation*}
\mathrm{BV}=1.333(r / 0.1854)^{-5.2} \tag{5}
\end{equation*}
$$

Figure 6. Simulated and experimental ${ }^{51} \mathrm{~V}$ static NMR spectra of $x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$ glasses $(x=5,9.1,20,30,33.3,40$, 50,60 and 70).
where r is the $\mathrm{Te}-\mathrm{O}$ distance in nm . Since the $\mathrm{Te}-\mathrm{O}_{a x}$ and $\mathrm{Te}-\mathrm{O}_{e q}$ bond distances of TeO_{4} tbp in several tellurite crystals take the values of 0.204-0.219 and $0.183-0.195 \mathrm{~nm}$ [15], respectively, equation (5) gives $\mathrm{BV}=0.81-0.56$ and 1.43-1.03. Although weak $\mathrm{Te}-\mathrm{O}$ bonds with distances longer than 0.25 nm are usually ignored, it should be kept in mind that weak interactions between two atoms are effectively not zero. A difference in BV between the $\mathrm{Te}-\mathrm{O}_{a x}$ bond and the $\mathrm{Te}-\mathrm{O}_{e q}$ bond in TeO_{4} tbp in representative tellurite crystals is $0.24-0.73$. If a difference in BV between the $\mathrm{Te}-\mathrm{O}_{a x}$ bond and the $\mathrm{Te}-\mathrm{O}_{e q}$ bond in TeO_{4} tbp is $0.24-0.73$, therefore, it can be undoubtedly deduced that such a TeO_{4} tbp is stable. An additional assumption that a TeO_{4} tbp consists of two equivalent $\mathrm{Te}-\mathrm{O}_{a x}$ bonds and two equivalent $\mathrm{Te}-\mathrm{O}_{e q}$ bonds was made in order to simplify the present model. Since the $\mathrm{Te}-\mathrm{O}_{N B O}$ bond distances in $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$in several tellurite crystals take the value of $0.183-0.1862 \mathrm{~nm}$ [15], equation (5) gives $\mathrm{BV}=1.43-1.30$.

The possible linkage modes between $\mathrm{O}_{1 / 2} \mathrm{Te}\left(=\mathrm{O}^{-}\right)-\mathrm{O}$ sharing an edge with VO_{4}^{3-} or a $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain and TeO_{4} tbp sharing its corner are shown in figure 10. The numerals in this figure indicate the BV values which were calculated based on an assumption described below. The VO_{4}^{3-} has two $\mathrm{V}=\mathrm{O}$ double bonds and two $\mathrm{V}-\mathrm{O}_{N B O}$ bonds. The VO_{5} tbps in the $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain have one $\mathrm{V}=\mathrm{O}$ double bond, two $\mathrm{V}-\mathrm{O}_{B O}$ and two $\mathrm{V}-\mathrm{O}_{N B O}$ bonds, where $\mathrm{O}_{B O}$ and $\mathrm{O}_{N B O}$ denote a bridging oxygen (BO) and a non-bridging oxygen (NBO). The BV values of $\mathrm{V}=\mathrm{O}$ double bonds and $\mathrm{V}-\mathrm{O}_{B O}$ bonds are assumed to be 2 and 1, respectively, because of the twofold coordinated $\mathrm{O}_{B O}$. Since the $\mathrm{V}-\mathrm{O}_{N B O}$ bonds in VO_{4}^{3-} and $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains in vanadate crystals have almost the same distances [20,21], it seems reasonable to assume that the $\mathrm{V}-\mathrm{O}_{N B O}$ bonds in VO_{4}^{3-} and $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains are equivalent and have the same BV values of 0.5 . Hence, the BV values of two $\mathrm{Te}-\mathrm{O}$ bonds in the $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$sharing an edge via two oxygens with VO_{4}^{3-} or a $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain become 1.5. As a result, the BV value of the $\mathrm{Te}-\mathrm{O}$ bond in the $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$sharing an oxygen with a TeO_{4} tbp is 1.0. Therefore, the

Figure 7. Plots of fractions of N_{4}^{\prime} and N_{5}^{\prime} against $\mathrm{V}_{2} \mathrm{O}_{5}$ content in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses.
(1) VO_{4} tetrahedra

(2) VO_{5} trigonal bipyramids (tbps)
(i) $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$-chain
(ii) $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$-zigzag chain

Figure 8. Structural units composed of VO_{4} tetrahedra and VO_{5} trigonal bipyramids (tbps) which are probably contained in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses.

BV values of $\mathrm{Te}-\mathrm{O}_{a x}$ and $\mathrm{Te}-\mathrm{O}_{e q}$ bonds in the TeO_{4} tbp are 1.0. In this case the difference in bond valence $\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{e q}\right)-\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{a x}\right)$ between the $\mathrm{Te}-\mathrm{O}_{a x}$ bond and $\mathrm{Te}-\mathrm{O}_{e q}$ bond in the

Figure 9. Composition dependence of $\left|\Delta \delta^{\prime}\right|_{\left(V O_{4}\right)}$ of VO_{4} tetrahedra in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses.
TeO_{4} tbp is zero, suggesting that the TeO_{4} tbp is unstable. The distances of $\mathrm{V}=\mathrm{O}$ double bonds in vanadate crystals are not constant [20,21,23,24,26], indicating that the BV values of $\mathrm{V}=\mathrm{O}$ double bonds in vanadate crystals are not constant. This means that the BV values of $\mathrm{V}=\mathrm{O}$ bonds in vanadate crystals change depending on the environment around $\mathrm{V}=\mathrm{O}$ bonds. Therefore, the BV values of $\mathrm{V}=\mathrm{O}$ bonds in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses may be also changed depending on the environment around $\mathrm{V}=\mathrm{O}$ bonds. If a fraction of the BV of $\mathrm{V}=\mathrm{O}$ bonds in VO_{4}^{3-} or $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains (for example, 0.15) is transferred to the BV of $\mathrm{V}-\mathrm{O}_{N B O}$ bonds, the BVs take values as shown in parentheses in figure 10. In this case the $\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{e q}\right)-\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{a x}\right)$ values become 0.6 and 0.3 in VO_{4}^{3-} and $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains, respectively, and then the TeO_{4} tbp becomes stable.

Possible linkage modes of corner sharing between $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$, $\mathrm{a}\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain or a $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain and $\mathrm{O}_{3 / 2} \mathrm{Te}_{-a x} \mathrm{O}^{-}$are illustrated in figure 11. The numerals in this figure have the same meaning as those in figure 10. The VO_{4} tetrahedra in $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains are composed of one $\mathrm{V}=\mathrm{O}$ double bond, two $\mathrm{V}-\mathrm{O}_{B O}$ bonds and one $\mathrm{V}-\mathrm{O}_{N B O}$ bond. The BV values of the $\mathrm{V}-$ $\mathrm{O}_{N B O}$ bonds are estimated to be 1 based on the assumption already mentioned. Since $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ corresponds to a $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain with $n=2$, the BV values of $\mathrm{V}-\mathrm{O}_{N B O}$ bonds in $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ are also estimated to be 1. The VO_{5} tbps in $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains consist of one $\mathrm{V}=\mathrm{O}$ double bond, three $\mathrm{V}-\mathrm{O}_{B O}$ bonds and one $\mathrm{V}-\mathrm{O}_{N B O}$ bond. The BV values of the $\mathrm{V}-\mathrm{O}_{B O}$ bonds in $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains are assumed to be $2 / 3$ because of the threefold coordinated $\mathrm{O}_{B O}$. Therefore, the BV value of a $\mathrm{V}-\mathrm{O}_{N B O}$ bond in a $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain is estimated to be 1 . The BV values of two $\mathrm{Te}-\mathrm{O}_{a x}$ bonds in the TeO_{4} tbp sharing its axial oxygen with one of $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}, \mathrm{a}\left(\mathrm{VO}_{3}\right)_{n}^{n-}$
(1) $\mathrm{VO}_{4}^{3}\left(\mathrm{VO}_{4}\right)$

(2) $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$-chain $\left(\mathrm{VO}_{5}\right)$

Figure 10. Possible linkage modes of corner sharing between edge-shared $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$with VO_{4}^{3-} or a $\left(\mathrm{VO}_{4}\right)^{3 n-}$ chain and TeO_{4} tbp.
chain or a $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain become 1. As a result the BV values of two $\mathrm{Te}-\mathrm{O}_{e q}$ bonds in the TeO_{4} tbp are also 1. In this case $\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{e q}\right)-\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{a x}\right)$ becomes zero, so that the $\mathrm{O}_{3 / 2} \mathrm{Te}-{ }_{a x} \mathrm{O}^{-}$is unstable. If a fraction of the BV of $\mathrm{V}=\mathrm{O}$ bonds in $\mathrm{V}_{2} \mathrm{O}_{7}^{4-},\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains or $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains (for example, 0.3 for $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}, 0.15$ for $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains or $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains) is transferred to the BV of $\mathrm{V}-\mathrm{O}_{N B O}$ bonds as shown in figure 11, the BVs take the values in parentheses. In this case, $\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{e q}\right)-\mathrm{BV}\left(\mathrm{Te}-\mathrm{O}_{a x}\right)$ is 0.3 and then the TeO_{4} tbp becomes stable. Since the BVs of the $\mathrm{Te}-\mathrm{O}_{e q}$ bond in $\mathrm{O}_{3 / 2} \mathrm{Te}-{ }_{e q} \mathrm{O}^{-}$and the $\mathrm{Te}-\mathrm{O}_{N B O}$ bonds in $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$are larger than unity, both $\mathrm{O}_{3 / 2} \mathrm{Te}_{- \text {eq }} \mathrm{O}^{-}$and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$would not be connected with $\mathrm{V}_{2} \mathrm{O}_{7}^{4-},\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains.

Therefore, it can be concluded that VO_{4}^{3-} and $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains are preferentially linked with $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$by sharing their edges, whereas $\mathrm{V}_{2} \mathrm{O}_{7}^{4-},\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains are preferentially linked with $\mathrm{O}_{3 / 2} \mathrm{Te}_{-a x} \mathrm{O}^{-}$.

4.3. Structure model of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses

In our previous papers [10-12], the fractions of $\mathrm{TeO}_{4 / 2}, \mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$ were calculated by using a model of a structural change. The fractions can be quantitatively calculated using the model only when all the oxygen atoms in metal oxides other than TeO_{2} are completely used to break a $\mathrm{Te}-\mathrm{O}-\mathrm{Te}$ linkage. Hence, the fractions cannot be quantitatively obtained using the model in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses since the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ linkages as seen in $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains and the $\mathrm{V}=\mathrm{O}$ double bonds are contained in the glasses (see figure 5).

The numbers of NBO atoms in the tellurite and vanadate structural units, which can be calculated from the fractions of the structural units and glass compositions, are used in considering the tellurite and vanadate structural units at each glass composition in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses. $\Sigma \mathrm{MO}_{n}$ (the numbers of MO_{n} polyhedra $\left(\mathrm{TeO}_{3}\right.$ tp, TeO_{4} tbp, VO_{4} tetrahedra and
(1) $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}\left(\mathrm{VO}_{4}\right)$

(2)

(3)

Figure 11. Possible linkage modes of corner sharing between $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$, a $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain or a $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain and $\mathrm{O}_{3 / 2} \mathrm{Te}-{ }_{a x} \mathrm{O}^{-}$.
$\mathrm{VO}_{5} \mathrm{tbp}$) per unit chemical formula) and $\Sigma \mathrm{O}_{N B O}$ (the numbers of NBO atoms in the present structural units) were calculated on the basis of glass compositions. $\Sigma \mathrm{MO}_{n}$ and $\Sigma \mathrm{O}_{N B O}$ are listed in table 4. According to the previous structural model [10-12], three tellurite structural units $\mathrm{TeO}_{4 / 2}, \mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$probably exist when the $\mathrm{V}_{2} \mathrm{O}_{5}$ content is small. In this case the numbers of NBO atoms in $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}, \mathrm{VO}_{4}$ and VO_{5} can be calculated, but the fraction of $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$units is not known. Almost all the NBO atoms in vanadate structural units are considered to be connected with Te atoms. On the basis of this assumption, the fraction of $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$is estimated from the numbers of NBO atoms in $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$, VO_{4} and VO_{5}.

Since $\mathrm{V}_{2} \mathrm{O}_{7}^{4-}$ corresponds to a $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain with $n=2$, it can be regarded as a species of $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain. The procedure in the estimation of the fractions of $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$units is as follows:
$\Sigma \mathrm{O}_{N B O}$ of a structural unit can be calculated from the following equation and procedures.
$\Sigma \mathrm{O}_{N B O}=\Sigma \mathrm{MO}_{n} \times$ (the fraction of a structural unit in MO_{n} polyhedra) \times (the numbers of NBOs per cation in a structural unit).
(i) The numbers of NBOs of $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\right)\right)$are calculated. Here all the TeO_{3} tps are assumed to be $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$.
(ii) The numbers of NBOs of $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains $\left(\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}\right.\right.$ chain (100\%))) are calculated, when all the VO_{5} tbps consist of $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains.

Table 4. $\Sigma \mathrm{MO}_{n}$ (numbers of MO_{n} polyhedra $\left(\mathrm{TeO}_{3}, \mathrm{TeO}_{4}, \mathrm{VO}_{4}\right.$ and VO_{5}) per unit chemical formula) and $\Sigma \mathrm{O}_{N B O}$ (numbers of non-bridging oxygen (NBO) atoms in structural units), which were obtained by ${ }^{51} \mathrm{~V}$ and ${ }^{125} \mathrm{Te}$ static NMR measurements.

Glass composition ($\mathrm{mol} \%$)	$\Sigma \mathrm{MO}_{n}{ }^{\text {a }}$		$\Sigma \mathrm{O}_{N B O}$	
$5 \mathrm{~V}_{2} \mathrm{O}_{5} .95 \mathrm{TeO}_{2}$	$\mathrm{VO}_{4}(25 \%)$	2.5	$\mathrm{VO}_{4}^{3-}\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 5$	(100% in VO_{4})
	VO_{5} (75\%)	7.5	$\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain $\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 15$	(100\% in VO_{5})
	TeO_{4} (89\%)	84.5	$\mathrm{TeO}_{4 / 2}\left(0^{\mathrm{b}}\right) \rightarrow 0$	(100\% in TeO_{4})
			$\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(1^{\mathrm{b}}\right) \rightarrow 0$	(0% in TeO_{4})
	$\mathrm{TeO}_{3}(11 \%)$	10.5	$\mathrm{O}_{1 / 2} \mathrm{Te}\left(=\mathrm{O}-\mathrm{O}^{-}\left(2^{\mathrm{b}}\right) \rightarrow 21\right.$	(100\% in TeO_{3})
$9.1 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 90.9 \mathrm{TeO}_{2}$	$\mathrm{VO}_{4}(28 \%)$	5.1	$\mathrm{VO}_{4}^{3-}\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 8.4$	(82% in VO_{4})
			$\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain $\left(1^{\mathrm{b}}, \mathrm{TeO}_{4}^{\mathrm{c}}\right) \rightarrow 0.9$	(18% in VO_{4})
	$\mathrm{VO}_{5}(72 \%)$	13.1	$\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain $\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}^{\mathrm{c}}\right) \rightarrow 26.2$	(100% in VO_{5})
	$\mathrm{TeO}_{4}(81 \%)$	73.6	$\mathrm{TeO}_{4 / 2}\left(0^{\mathrm{b}}\right) \rightarrow 0$	(99% in TeO_{4})
			$\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(1^{\mathrm{b}}\right) \rightarrow 0.9$	(1% in TeO_{4})
	$\mathrm{TeO}_{3}(19 \%)$	17.3	$\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(2^{\mathrm{b}}\right) \rightarrow 34.6$	(100\% in TeO_{3})
$20 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 80 \mathrm{TeO}_{2}$	$\mathrm{VO}_{4}(34 \%)$	13.6	$\mathrm{VO}_{4}^{3-}\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 4.8$	(18% in VO_{4})
			$\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain $\left(1^{\mathrm{b}}, \mathrm{TeO}_{4}{ }^{\mathrm{c}}\right) \rightarrow 11.2$	(82\% in VO_{4})
	$\mathrm{VO}_{5}(66 \%)$	26.4	$\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain $\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 52.8$	(100% in VO_{5})
	$\mathrm{TeO}_{4}(64 \%)$	51.2	$\mathrm{TeO}_{4 / 2}\left(0^{\mathrm{b}}\right) \rightarrow 0$	(78% in TeO_{4})
			$\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(1^{\mathrm{b}}\right) \rightarrow 11.2$	(22% in TeO_{4})
	$\mathrm{TeO}_{3}(36 \%)$	28.8	$\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(2^{\mathrm{b}}\right) \rightarrow 57.6$	(100\% in TeO_{3})
$30 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 70 \mathrm{TeO}_{2}$	$\mathrm{VO}_{4}(38 \%)$	22.8	$\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain $\left(1^{\mathrm{b}}, \mathrm{TeO}_{4}{ }^{\mathrm{c}}\right) \rightarrow 22.8$	(100% in VO_{4})
	VO_{5} (62\%)	37.2	$\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain $\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 60.2$	(81% in VO_{5})
			$\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain $\left(1^{\mathrm{b}}, \mathrm{TeO}_{4}{ }^{\mathrm{c}}\right) \rightarrow 7.1$	(19\% in VO_{5})
	$\mathrm{TeO}_{4}(57 \%)$	39.9	$\mathrm{TeO}_{4 / 2}\left(0^{\mathrm{b}}\right) \rightarrow 0$	(25% in TeO_{4})
			$\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(1^{\mathrm{b}}\right) \rightarrow 29.9$	(75% in TeO_{4})
	$\mathrm{TeO}_{3}(43 \%)$	30.1	$\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(2^{\mathrm{b}}\right) \rightarrow 60.2$	(100% in TeO_{3})
$33.3 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 66.7 \mathrm{TeO}_{2}$	$\mathrm{VO}_{4}(39 \%)$	26.0	$\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain $\left(1^{\mathrm{b}}, \mathrm{TeO}_{4}{ }^{\mathrm{c}}\right) \rightarrow 26.0$	(100% inVO4 ${ }^{\text {a }}$)
	VO_{5} (61\%)	40.6	$\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain $\left(2^{\mathrm{b}}, \mathrm{TeO}_{3}{ }^{\mathrm{c}}\right) \rightarrow 60.0$	(74\% in VO_{5})
			$\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain $\left(1^{\mathrm{b}}, \mathrm{TeO}_{4}{ }^{\mathrm{c}}\right) \rightarrow 10.6$	(26\% in VO_{5})
	$\mathrm{TeO}_{4}(55 \%)$	36.7	$\mathrm{TeO}_{4 / 2}\left(0^{\mathrm{b}}\right) \rightarrow 0$	(0.3\% in TeO_{4})
			$\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(1^{\mathrm{b}}\right) \rightarrow 36.6$	(99.7\% in TeO_{4})
	$\mathrm{TeO}_{3}(45 \%)$	30.0	$\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(2^{\mathrm{b}}\right) \rightarrow 60.0$	(100% in TeO_{3})

a $\Sigma \mathrm{MO}_{n}=\left(\right.$ total number of Te or V per unit chemical formula) $\times\left(\right.$ fraction of MO_{n} polyhedra).
${ }^{\mathrm{b}}$ The numeral in parentheses is the number of NBO per cation in a structural unit.
${ }^{\mathrm{c}}$ A vanadate structural unit is preferentially linked with the corresponding tellurite structural unit in parentheses.
(iii) (a) When $\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\right)>\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}\right.$ chain (100\%)) $\left(\mathrm{V}_{2} \mathrm{O}_{5} \leqslant\right.$ $20 \mathrm{~mol} \%)$, the numbers of NBOs of $\mathrm{VO}_{4}^{3-}\left(\Sigma \mathrm{O}_{N B O}\left(\mathrm{VO}_{4}^{3-}\right)\right)$ can be estimated by the following equation:

$$
\begin{equation*}
\Sigma \mathrm{O}_{N B O}\left(\mathrm{VO}_{4}^{3-}\right)=\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\right)-\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-} \text { chain }(100 \%)\right) . \tag{7}
\end{equation*}
$$

In this case the numbers of NBOs of $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains $\left(\mathrm{\Sigma O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}\right.\right.$ chain $\left.)\right)$ become equal to $\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}\right.$ chain $\left.(100 \%)\right)$. In a $5 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot 95 \mathrm{TeO}_{2}$ glass where all the VO_{4} tetrahedra are considered to be $\mathrm{VO}_{4}^{3-}, \Sigma \mathrm{O}_{N B O}\left(\mathrm{VO}_{4}^{3-}\right)$ is estimated to be 5 since $\Sigma \mathrm{O}_{N B O}\left(\mathrm{VO}_{4}^{3-}\right)$ is 5 and is small compared with $\Sigma \mathrm{O}_{N B O}\left(\mathrm{VO}_{4}^{3-}\right)$ obtained by equation (7).
(b) The fractions of VO_{4}^{3-} and $\left(\mathrm{VO}_{3}\right)_{n}^{3 n-}$ chains in VO_{4} tetrahedra are obtained.
(c) The numbers of NBOs of $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains $\left(\mathrm{\Sigma O}_{N B O}\left(\left(\mathrm{VO}_{3}\right)_{n}^{n-}\right.\right.$ chain)) are estimated.
(d) The numbers of NBOs of $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\right)\right)$become equal to that of $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains since $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$is considered to be preferentially connected with
$\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains as mentioned above.
(iv) (a) When $\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}\right.$ chain $\left.(100 \%)\right)>\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\right)$in glasses with $30 \leqslant \mathrm{~V}_{2} \mathrm{O}_{5} \leqslant 33.3 \mathrm{~mol} \%$, the numbers of NBOs of $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains $\left(\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}\right.\right.$ chain $\left.)\right)$ are equal to that of $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$.
(b) The fractions of $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains in VO_{5} tbp are obtained.
(c) The numbers of NBOs of $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains $\left(\Sigma \mathrm{O}_{N B O}\left(\mathrm{~V}_{2} \mathrm{O}_{8}\right)_{n}\right.$ zigzag chain $)$) are estimated.
(d) $\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\right)$is obtained as the summation of $\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{VO}_{3}\right)_{n}^{n-}\right.$ chain) and $\Sigma \mathrm{O}_{N B O}\left(\left(\mathrm{~V}_{2} \mathrm{O}_{8}\right)_{n}\right.$ zigzag chain $)$.
(v) The fractions of $\mathrm{TeO}_{4 / 2}$ and $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$can be estimated from $\Sigma \mathrm{O}_{N B O}\left(\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\right)$.

Table 5. Fractions of tellurite and vanadate structural units in glasses containing $\mathrm{V}_{2} \mathrm{O}_{5}$ up to 33.3 $\mathrm{mol} \%$.

Glass$x(\mathrm{~mol} \%)$	TeO_{4} (\%)		$\mathrm{TeO}_{3}(\%)$	VO_{4} (\%)		VO_{5} (\%)	
	$\overline{\mathrm{TeO}_{4 / 2}}$	$\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$	$\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$	VO_{4}^{3-}	$\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain	$\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain	$\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain
TeO_{2}	100	0	0	-	-	-	-
$x \mathrm{~V}_{2} \mathrm{O}_{5} \cdot(100-x) \mathrm{TeO}_{2}$							
$x=5$	89	0	11	25	0	75	0
$x=9.1$	80	1	19	23	5	72	0
$x=20$	50	14	36	6	28	66	0
$x=30$	14	43	43	0	38	50	12
$x=33.3$	0.2	54.8	45	0	39	45	16

The errors in the fractions of tellurite and vanadate structural units were calculated on the basis of the errors in area in tables 2 and 3.
The errors in the fractions of tellurite structural units are $\pm 3 \%$.
The errors in the fractions of VO_{4} structural units in the glasses with 9.1 and $20 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ are ± 11 and $\pm 5 \%$, respectively.
The errors in the fractions of VO_{5} structural units in the glass with 30 and $33.3 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ are $\pm 3 \%$.
The errors in the fractions of other vanadate structural units are $\pm 1 \%$.
The fractions of tellurite and vanadate structural units in glasses containing $\mathrm{V}_{2} \mathrm{O}_{5}$ up to $33.3 \mathrm{~mol} \%$ are shown in figure 12 and table 5. The error in the estimated $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$fractions is at most $\pm 3 \%$. The errors in the estimated $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain fractions in the range of $30-33.3 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ are $\pm 3 \%$. The errors in the estimated VO_{4}^{3-} fractions in the range of $9.1-20 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ are $\pm 5-11 \%$. The $\mathrm{TeO}_{4 / 2}$ fraction decreases, while the $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$fractions increase with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The initial addition of $\mathrm{V}_{2} \mathrm{O}_{5}$ to TeO_{2} glass results in the formation not of $\mathrm{O}_{3 / 2}{\mathrm{Te}-\mathrm{O}^{-} \text {but of }}^{2}$ $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$, and the $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$fraction increases rapidly above $20 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$. This tendency is similar to that in other tellurite glasses investigated in the previous papers [1012]. The VO_{4}^{3-} and $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain fractions decrease and the $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain increases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain fraction is 0% up to $20 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$ and then increases with a further increase of $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain, $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain are contained in glasses with $\mathrm{V}_{2} \mathrm{O}_{5}$ contents more than $30 \mathrm{~mol} \%$, suggesting that all the vanadate structural units act as a network former in the glasses.

Thus, both $\mathrm{V}_{2} \mathrm{O}_{5}$ and TeO_{2} can act as a network formers in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses. The tellurite structural units such as $\mathrm{TeO}_{4 / 2}$ and $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$mainly form a glass network in glasses with low $\mathrm{V}_{2} \mathrm{O}_{5}$ contents, while the vanadate structural units such as $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chains, $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chains and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains mainly form a glass network in glasses with high

Figure 12. Plots of fractions of tellurite (upper figure) and vanadate (lower figure) structural units against compositions in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses containing $\mathrm{V}_{2} \mathrm{O}_{5}$ up to $33.3 \mathrm{~mol} \%$.
$\mathrm{V}_{2} \mathrm{O}_{5}$ contents. This can explain the reason whey the binary $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ system has a very wide glass-forming region.

As described above, the N_{3} and N_{4} values are different between the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glass system and other metal glass systems in the previous papers [10-12]. Probably this can be explained as follows. Because MO_{n} polyhedra ($\mathrm{M}=$ alkali metal, $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Pb}, \mathrm{Al}$ and Ga) in the glasses do not form a glass network by themselves and M cations exist as free ions, all the oxygen atoms in these metal oxides are completed used to break $\mathrm{Te}-\mathrm{O}-\mathrm{Te}$ linkages. Since $\mathrm{V}-\mathrm{O}-\mathrm{V}$ linkages seen in $\left(\mathrm{VO}_{3}\right)_{n}^{n-},\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ chains and $\mathrm{V}=\mathrm{O}$ double bonds are contained in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses, on the other hand, not all the oxygen atoms in $\mathrm{V}_{2} \mathrm{O}_{5}$ added to tellurite glass are used to break $\mathrm{Te}-\mathrm{O}-\mathrm{Te}$ linkages, in other words, to form TeO_{3} tp. Even if the number of oxygen atoms in the metal oxides added to tellurite glass is equal, therefore, the numbers of oxygens used to change $\mathrm{TeO}_{4 / 2}$ to $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$are much smaller in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses than other glass systems.

The conductivity of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses is attributed to electron hoping between neighbouring V^{4+} and V^{5+} [4]. Since V^{4+} ions exist in tetragonally distorted octahedral sites in $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses [28], these are considered to be connected with $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chains.

5. Conclusion

The structures of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses were examined by means of the ${ }^{125} \mathrm{Te}$ and ${ }^{51} \mathrm{~V}$ static NMR spectroscopies. The following conclusions were obtained.
(i) The fraction of TeO_{3} tp increases and that of TeO_{4} tbp decreases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content.
(ii) The fraction of $\mathrm{TeO}_{4 / 2}\left(\mathrm{TeO}_{4}\right.$ tbp without a non-bridging oxygen (NBO)) decreases, while those of $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}\left(\mathrm{TeO}_{4}\right.$ tbp with an NBO$)$ and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}\left(\mathrm{TeO}_{3}\right.$ tp with two NBOs) increase with an increase of $\mathrm{V}_{2} \mathrm{O}_{5}$ content up to $33.3 \mathrm{~mol} \%$.
(iii) The fraction of VO_{4} tetrahedral increases and that of VO_{5} tbp decreases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content.
(iv) $\mathrm{The}_{\mathrm{VO}_{4}^{3-}}$ and $\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ chain fractions decrease and the $\left(\mathrm{VO}_{3}\right)_{n}^{n-}$ chain fraction increases with an increase of $\mathrm{V}_{2} \mathrm{O}_{5}$ content up to $33.3 \mathrm{~mol} \%$. The $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ zigzag chain fraction is 0% in the glasses with $\mathrm{V}_{2} \mathrm{O}_{5}$ contents less than $20 \mathrm{~mol} \%$ and then increases with increasing $\mathrm{V}_{2} \mathrm{O}_{5}$ content. The structural units $\left(\mathrm{VO}_{3}\right)_{n}^{n-},\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ chains are contained in glasses with $\mathrm{V}_{2} \mathrm{O}_{5}$ contents more than $30 \mathrm{~mol} \%$.
(v) Both $\mathrm{V}_{2} \mathrm{O}_{5}$ and TeO_{2} can act as network formers in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TeO}_{2}$ glasses. The tellurite structural units such as $\mathrm{TeO}_{4 / 2}$ and $\mathrm{O}_{3 / 2} \mathrm{Te}-\mathrm{O}^{-}$mainly form a glass network in glasses with low $\mathrm{V}_{2} \mathrm{O}_{5}$ contents, while the vanadate structural units such as $\left(\mathrm{VO}_{3}\right)_{n}^{n-},\left(\mathrm{VO}_{4}\right)_{n}^{3 n-}$ and $\left(\mathrm{V}_{2} \mathrm{O}_{8}\right)_{n}$ chains mainly form a glass network in glasses with high $\mathrm{V}_{2} \mathrm{O}_{5}$ contents.

Acknowledgments

The authors thank Professor F Horii, Mrs K Omine and Dr H Kaji of Kyoto University for their helpful advice and assistance in the NMR measurements. One of the authors (TY) also acknowledges a grant from the Asahi Glass Foundation.

References

[1] Denton E P, Rawson H and Stanworth J E 1954 Nature 173 1030-2
[2] Flynn B W, Owen A E and Robertson J M 1977 Proc. 7th Int. Conf. on Amorphous and Liquid Semiconductors (Edinburgh) pp 678-82
[3] Flynn B W and Owen A E 1981 J. Physique Coll. 42 C4 1005-8
[4] Dhawan V K, Mansingh A and Sayer M 1982 J. Non-Cryst. Solids 51 87-103
[5] Hirashima H, Ide M and Yoshida T 1986 J. Non-Cryst. Solids 86 327-35
[6] Mansingh A and Dhawan V K 1983 Phil. Mag. B 47 121-38
[7] Gattef E and Dimitriev Y 1979 Phil. Mag. B 40 233-42
[8] Dimitriev Y and Dimitrov V 1978 Mater. Res. Bull. 13 1071-5
[9] Dimitriev Y, Dimitrov V and Arnaudov M 1983 J. Mater. Sci. 18 1353-8
[10] Sakida S, Hayakawa S and Yoko T 1999 J. Non-Cryst. Solids 243 13-25
[11] Sakida S, Hayakawa S and Yoko T 1999 J. Ceram. Soc. Japan 107 395-402
[12] Sakida S, Hayakawa S and Yoko T J. Am. Ceram. Soc. submitted
[13] Hayakawa S, Yoko T and Sakka S 1994 J. Ceram. Soc. Japan 102 530-6
[14] Hayakawa S, Yoko T and Sakka S 1995 J. Non-Cryst. Solids 183 73-84
[15] Sakida S, Hayakawa S and Yoko T 1999 J. Non-Cryst. Solids 243 1-12
[16] Collins M J, Ripmeester J A and Sawyer J F 1987 J. Am. Chem. Soc. 109 4113-15
[17] Eckert H and Wachs I E 1989 J. Phys. Chem. 93 6796-805
[18] Smith K A, Kirkpatrick R J, Oldfield E and Henderson D M 1983 Am. Mineral. 68 1206-15
[19] Hayashi S and Hayamizu K 1990 Bull. Chem. Soc. Japan 63 961-3
[20] Darriet J, Guillaume G, Wilhelmi K-A and Galy J 1972 Acta Chem. Scand. 26 59-70
[21] Darriet J and Galy J 1973 Cryst. Struct. Commun. 2 237-8
[22] Hayakawa S, Yoko T and Sakka S 1994 J. Solid State Chem. 112 329-39
[23] Gopal R and Calvo C 1974 Acta Crystallogr. B 30 2491-3
[24] Shannon R D and Calvo C 1973 Can. J. Chem. 51 265-73
[25] Süsse P and Buerger M J 1970 Z. Kristallogr. 131 161-74
[26] Kato K and Takayama E 1984 Acta Crystallogr. B 40 102-5
[27] Philippot E 1981 J. Solid State Chem. 38 26-33
[28] Chopra N and Mansingh A 1992 J. Non-Cryst. Solids 146 261-6

[^0]: § Corresponding author. Present address: Venture Business Laboratory, Kobe University, Nada, Kobe 657-8501,

